What is STREAMTABLE in Hive?

In Hive, we can optimize a query by using STREAMTABLE hint. We can specify it in SELECT query with JOIN. During the map/reduce stage of JOIN, a table data can be streamed by using this hint.

E.g.
SELECT /*+ STREAMTABLE(table1) */ table1.val, table2.val
FROM table1 JOIN table2 ON (table1.key = table2.key1)

In above query we are using table1 as a stream.

If we do not use STREAMTABLE hint then Hive will stream the right most table in the JOIN query.

How does OVERWRITE clause work in CREATE TABLE statement in Hive?

We use OVERWRITE clause in CREATE TABLE statement to delete the existing data and write new data in a Hive table. Essentially, as the name suggests, OVERWRITE helps in overwriting existing data in a Hive table.

What are the options to connect an application to a Hive server?

We can use following options to connect an application a Hive server:

  • JDBC Driver: We can use JDBC Driver with embedded as well as remote access to connect to
    HiveServer. This is for Java based connectivity.
  • Python Client: For Python language application there is Python client that can connect to Hive server.
  • Ruby Client: With Ruby client driver also we can connect to Hive server.
  • Thrift Client: We can use Beeline command line shell to connect to Hive server over Thrift. For production mode, this is one of the very good options. It is a secure option for production use. Also we do not need to grant HDFS access to users for using Thrift client.

How TRIM and RPAD functions work in Hive?

TRIM and RPAD functions are for processing String data type in Hive.

With TRIM function we can delete the spaces before and after a String. It is very useful for formatting user input in which user may have entered extra spaces. The other variations of TRIM function are LTRIM and RTRIM that remove spaces from left and right side of the string respectively.

E.g. TRIM(‘ Smith ’)
Smith

RPAD function is used to add padding (extra spaces) in a String on the right hand side. So that String reaches a specified length. LPAD function is same as RPAD but it pads on the left hand side of String.

E.g. Let say we have a String “Hello”.

LPAD(‘Hello’,8,’ ‘)
Hello

We can also specify our optional padding character in RPAD and LPAD functions.

These functions are similar to the ones in SQL.

How will you recursively access sub-directories in Hive?

We can use following commands in Hive to recursively access sub-directories:

hive> Set mapred.input.dir.recursive=true;

hive> Set hive.mapred.supports.subdirectories=true;

Once above options are set to true, Hive will recursively access sub-directories of a directory in MapReduce.

What is the optimization that can be done in SELECT * query in Hive?

We can convert some of the SELECT queries in Hive into single FETCH task. With this optimization, latency of SELECT query is decreased.

To use this we have to set the value of hive.fetch.task.conversion parameter. The permissible values are:

  • 0: It means FETCH is disabled.
  • 1: It is minimal mode. SELECT *, FILTER on partition columns (WHERE and HAVING clauses), LIMIT only
  • 2: It is more mode: SELECT, FILTER, LIMIT only (including virtual columns)
    “more” can even take UDF expressions in the SELECT clause.

What is the use of ORC format tables in Hive?

We use Optimized Row Columnar (ORC) file format to store data efficiently in Hive. It is used for performance improvement in reading, writing and processing of data.

In ORC format, we can overcome the limitations of other Hive file formats. Some of the advantages of ORC format are:

<li>There is single file as the output of each task. This reduces load on NameNode.</li>


<li>It supports date time, decimal, struct, map etc complex types.</li>


<li>It stores light-weight indexes within the file.</li>


<li>We can bound the memory used in read/write of data.</li>


<li>It stores metadata with Protocol Buffers that supports add/remove of fields.</li>

What are the main use cases for using Hive?

Hive is mainly used for Datawarehouse applications. Hive used Hadoop and MapReduce that put some restrictions on use cases for Hive.

Some of the main use cases for Hive are:

  • Analysis of static Big data
  • <li>Applications in which less responsive time is acceptable</li>
    
    <li>Analysis of data that does not change rapidly</li>
    

    What is a Managed table in Hive?

    Managed tables are the tables in which files, metadata and statistics etc are managed by internal Hive processes. Hive creates Managed tables by default. When we drop a managed table or partition, then all the metadata and data associated with the table is also deleted.

    We use Managed tables, when we want Hive to manage the lifecycle of a table. Even for temporary tables, we use managed tables in Hive.

    When we run DESCRIBE FORMATTED tableName statement, it displays whether a table is MANAGED_TABLE or EXTERNAL_TABLE.

    How will you prevent data to be dropped or queried from a partition in Hive?

    We can use ALTER TABLE table_name ENABLE NO_DROP to prevent a table partition from being dropped.

    We can use ALTER TABLE table_name ENABLE OFFLINE to prevent a table partition from being queried. In offline mode, we can still access metadata of a table partition.